文章编号: 0253-2239(2008)10-1998-04

BiB₃O₆ 纳秒光参变振荡器

滕 冰^{1,5} 董胜明² 丁蕴丰³ 王正平⁴ 王继扬^{4*} 毛 瑞² 翟仲军² 于正河¹ 孙 成¹ 马 萍¹ ¹青岛大学物理科学学院,山东 青岛 266071;²山东山大华特科技公司,山东 济南 250100 ³长春理工大学理学院,吉林 长春 130022;⁴山东大学晶体材料国家重点实验室,山东 济南 250100

⁵ 青岛大学纤维新材料与现代纺织实验室,山东 青岛 266071

摘要 采用电光调 Q 脉冲 Nd: YAG 固体激光器的532 nm 绿光作为抽运光源(10~13 ns,0~20 mJ),以 Ⅱ 类相位 匹配(θ =57.5°, Φ =0°)、尺寸为4 mm×4 mm×12 mm 的三硼酸鉍晶体(BiB₈O₆)与一对 1215 nm 单谐振波长的平 镜组成腔长为40 mm 的谐振腔,构建了光参变振荡器的整个实验系统。系统将入射抽运光振荡产生 1215 nm 的信 号光及 946 nm 的闲频光,结果显示,抽运阈值为 9 mJ,最高耦合输出为 2.57 mJ,抽运脉冲能量与信号脉冲能量的 最高转换效率为 14.59%。

关键词 光学器件;光参变振荡器;BiB₃O₆晶体;转换效率 中图分类号 TN203 **文献标识码** A **doi**:10.3788/AOS20082810.1998

BiB₃O₆ Nanosecond Optical Parametric Oscillator

Teng Bing^{1,5} Dong Shengming² Ding Yunfeng³ Wang Zhengping⁴ Wang Jiyang⁴ Mao Rui² Zhai Zhongjun² Yu Zhenghe¹ Sun Xin¹ Ma Ping¹

¹ College of Physics Science, Qingdao University, Qingdao, Shandong 266071, China

² Shanda Wit Science and Technology Company, Jinan, Shandong 250100, China

³ College of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China

⁴ State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China

 $^{\circ}$ Laboratory of New Fibre Materials and Modern Textile, Qingdao University, Qingdao, Shandong 266071, China .

Abstract A nanosecond optical parametric oscillator (OPO) pumped by an electro-optic Q-switched Nd: YAG laser with 532 nm green light (10~13 ns, 0~20 mJ) was constructed. The resonant cavity of 40 mm long was made from a BiB₃O₆ crystal of size 4 mm×4 mm×12 mm with type-II phase matching (θ =57.5°, ϕ =0°), and a pair of plane mirrors with singly-resonant wavelength 1215 nm. The OPO system converted the incident pump beam into the signal laser of 1215 nm and the idler laser of 946 nm. The pump threshold of 9 mJ and the highest coupling output of 2.57 mJ for the highest conversion efficiency of 14.59% were achieved.

Key words optical device; optical parametric oscillator; BiB_3O_6 crystal; conversion efficiency

1 引 言

纳秒光参变振荡器(Optical parametric oscillator, OPO)具有可调谐范围宽、转换效率高等特点,并且能 产生窄的脉宽谱线(0.1 cm⁻¹)和接近衍射极限的光, 在光谱学、激光雷达等不同领域得到广泛应用^[1~4]。 OPO 主要困难是非线性转换所要求的强电场易导致 非线性光学晶体的光学损伤^[5~8]。

新型非线性光学晶体三硼酸鉍(BiB₃O₆,BIBO) 除了具有不潮解、物化性能稳定、光损伤阈值高(大 于 0.3 GW/cm^2 , 1064 nm, TEM₀₀, 10 ns, 10 Hz)

E-mail: wlxteng@qdu.edu.cn

收稿日期: 2007-11-30; 收到修改稿日期: 2008-02-21

基金项目:国家自然科学基金(10304009,10774081)和山东省优秀中青年科学家科研奖励基金(2005BS04004)资助课题。 作者简介:滕 冰(1968-),女,教授,博士生导师,主要从事人工晶体生长与性能等方面的研究。

^{*} 通信联系人。E-mail: jywang@icm. sdu. edu. cn

等特点之外,其突出优势是有效非线性光学系数 d_{eff} 较大(大约是 LBO 的 3.5~4 倍, BBO 的 1.5~ 2倍),甚至高于 KTP,在 1064 nm 的腔外倍频实验 中其转换效率可达到近 70%[9~13]。对该晶体的生 长和倍频、混频等非线性光学研究发现[10,14~17], BIBO 晶体的双折射率差较大,相位匹配波长随角 度的变化灵敏。因此预测该晶体不仅可用作高效的 倍频、和频器件,而且在光参变领域具有一定的应用 前景^[16]。M. Ghotbi 等报道了 BiB₃O₆ 晶体的飞秒 脉冲光参变振荡器,晶体厚度为 0.5 mm,采用锁模 Ti:sapphire激光器在室温下实现了 YZ 主平面内 I 类相位匹配的 OPO,得到了波长为 480~710 nm 的 信号光,平均输出功率为 270 mW^[18]。本文设计了 BIBO-OPO 激光参变实验系统,采用 Nd: YAG 固 体激光器抽运,对 BIBO 晶体的Ⅱ类相位匹配进行 了 OPO 理论分析及实验测试,实现了 1215 nm 的 单谐振输出。

2 实验装置与设计

实验装置如图 1 所示,由抽运源、非线性光学晶体、谐振腔及能量探测系统构成。图中介质膜片:1,2为1215 nm 全反腔镜,其镀膜为 1 面 532 nm 高透;2面1215 nm 为中心的波长高反;3,4为1215 nm 部分反射腔镜,其镀膜为 3 面 1215 nm 为中心波长部分反射,532 nm 高反;4 面 1215 nm 为中心波长高透。

图 1 实验装置与原理示意图

Fig. 1 Schematic diagram of the experimental setup

2.1 抽运源和调谐系统

初始光源为电光调 Q 的 Nd: YAG 固体脉冲激 光器,使用 KTP 晶体倍频获得纳秒量级的 532 nm 绿光作为 OPO 抽运源。输出激光脉冲宽度为 10~ 13 ns,单脉冲能量为 0~20 mJ,光束直径 2 mm。 OPO 实验系统包括 BIBO 参变晶体以及一对以 1215 nm 为单谐振波长的平镜构成的谐振腔,谐振 腔长 40 mm。后经 K9 玻璃棱镜分光,以热释电能 量探头进行能量测试。

2.2 BIBO 光参变晶体的设计

纳秒量级的 532 nm 激光作为抽运源,在 BIBO

晶体中以 OPO 的方式产生 1215 nm 信号光输出, 相应的闲频光波长为 946 nm。OPO 所产生的变频 特性主要取决于晶体中的相位匹配条件,因此首先 要选择光参变晶体的最佳匹配角。我们取抽运光矢 量与信号光矢量方向一致,考察信号光波长与 BIBO 晶体角度的调谐关系,以及晶体非线性系数 与角度的关系。图 2 所示是由非线性光学程序 SNLO 计算出的 532 nm 抽运的 BIBO 光参变振荡器 的波长调谐结果^[19]。两条曲线分别对应II类相位匹 配的信号光与闲频光。抽运光与闲频光的偏振在 *XZ* 平面内(o 光),信号光的偏振沿晶体 Y 轴(e 光)。

图 2 532 nm 波长激光抽运 [] 类 BIBO 晶体时 OPO 的 调谐角度

Fig. 2 Tuning range of a type- [] BIBO crystal with OPO pumped by 532 nm laser

图 3 为 BIBO 晶体的非线性系数与角度之间的 关系。由 BIBO 在 XY, XZ 和 YZ 三个面上的参量 耦合结果可知,只在 XZ 面(II 类)和 YZ 面(I 类) 上才出现有效的耦合,可以发生 OPO 效应。并且 在 I 类和 II 类的比较中,由于 YZ 面(I 类)角度选 择范围过小,非线性系数也较低,故舍弃,因此实验 中选择在 XZ 面上(II 类)取角度加工样品使用。根 据图 2,对应 1215 nm 的信号光,沿 $\theta=57.5^{\circ}, \Phi=0^{\circ}$ ($d_{\text{eff}}=1.5 \text{ pm/V})$ 加工了 BIBO 晶体,样品长度

Fig. 3 Nonlinear coefficients corresponding to type- [, [] phase matching angles of BIBO crystal

12 mm,橫截面 4 mm×4 mm,两通光面镀 532 nm、 1215 nm 双增透膜。

3 实验与结果分析

将 OPO 系统的各器件按照抽运光路安装调试完 毕之后,打开抽运源对其进行抽运,旋转晶体角度找 到合适的匹配位置,产生参变振荡。以红外卡片(将 红外光转换为可见光,响应范围为 850~1550 nm)进 行观测,确定位置之后调整谐振腔,直至输出最佳, 然后探测能量。

如图 1 所示,单谐振型 OPO 将入射抽运光转换 为信号光和闲频光,其中闲频光由于未在谐振腔内 形成有效的增益振荡而被消耗,因此输出光为信号 光和部分未参加参变过程的剩余抽运光。调节晶体 的角度位置及其腔长、腔型,最后得到参变输出光束 为 TEM₀₁模,如图 4 所示。左边的两个红色光斑是 红外卡片所显示的 TEM₀₁模式 1215 nm 信号光,右 边的绿色光斑是未起作用的 532 nm 抽运光。能量 探测结果如图 5 所示。

图 4 探测的信号光(a)及未起作用的抽运光(b) Fig. 4 Detected signal (a) and functionless pump light (b)

该 OPO 系统的抽运阈值为 9 mJ,最高耦合输 出为 2.57 mJ,转换效率最高为 14.59%。进一步增 大抽运能量,耦合输出反而下降。观察晶体后发现 其内部已经出现损伤,而晶体表面的膜系完好。可 能是加工该样品的晶体毛坯本身存在缺陷,导致在 增大抽运能量时产生损伤。

为了获得更高的转换效率,可以考虑将晶体的 通光长度加长;为了使抽运强度明显低于损伤阈值, 晶体最好能有足够大的截面^[20]。对于单谐振 OPO 系统来说,适当选取谐振腔输出镜的透过率也是很 重要的。此外,为了提高转换效率,可以将 OPO 置 于抽运激光腔内,这种构造很适合高重频激光器的 工作。

4 结 论

采用 Nd: YAG 脉冲激光器进行抽运,构建了 BIBO-OPO 激光参变实验系统。对 BIBO 晶体的 II 类匹配类型进行了 OPO 实验测试和分析,该 OPO 系统的抽运阈值为9 mJ,输出波长为1215 nm,最大 输出能量为2.57 mJ,最高转换效率为14.59%,结 果显示 BIBO 不但不潮解和物化性能稳定,而且具 有高的非线性光学系数和抗光伤阈值,因此利用 BIBO 有望制作出新型、高效的光参变振荡器。

致谢 感谢青岛大学物理科学学院陈沙鸥教授、刘 均海教授等在论文撰写过程中的帮助和讨论。

参考文献

Xie Gang, Peng Yuefeng, Lu Yanhua *et al.*. High efficiency
23.6 W, 2 μm laser[J]. *Chin. J. Lasers*, 2007, 34(11): 1489~
1491

谢 刚,彭跃峰,鲁燕华等. 23.6 W高效率 2 μm 激光器[J]. 中 国激光, 2007, **34**(11): 1489~1491

2 Zhu Yachen, Lan Ge, Li Tong *et al.*. 2 μm KTiOAsO₄ optical parametrical oscillator[J]. Acta Optica Sinica, 2007, **27**(11):

 $2059 \sim 2063$

朱雅琛,兰 戈,李 彤等.脉冲式2μm KTiOAsO4光参量振荡 器[J]. 光学学报, 2007, **27**(11): 2059~2063

- 3 Zhang Shaojun, Tian Zhaobing, Yin Xin et al.. Study of a Nd: YAG laser with voltage-decreased electro-optical Q-switch of optical activity crystal La₃Ga₅SiO₁₄ [J]. Acta Optica Sinica, 2006, 26(5): 689~692
- 张少军,田召兵,尹 鑫等.退压式La₃Ga₅SiO₁₄晶体电光调QNd:YAG激光器激光性能研究[J].光学学报,2006,**26**(5):689~692
- 4 Wang Jiaxian, Zhang Fengjuan, Zhang Xinwei. Intracavity KTP optical parametrical oscillator with signal pulse shorter 12 times than pump pulse[J]. Chin. J. Lasers, 2006, 33(10): 1301~1304

王加贤,张凤娟,庄鑫巍. 信号光脉冲比抽运光窄 12 倍的内腔式 KTP 光参量振荡器[J]. 中国激光,2006,**33**(10):1301~1304

- 5 Fan X. F., Eckardt R. C., Byer R. L., Visible BaB₂O₄ optical oscillator pumped at 355 nm by a single-axial-mode pulsed source [J]. Appl. Phys. Lett., 1988, 53(21): 2014~2016
- 6 Li H. Q., Zhang H. B., Bao Z. et al., High-power nanosecond optical parametric oscillator based on a long LiB₃O₅ crystal[J]. Opt. Commun., 2004, 232: 411~415
- 7 Yao Jianghong, Xue Liangping, Yan Boxia *et al.*. Optical parametrical oscillator based on periodically poled MgO: LiNbO₃ crystal[J]. *Chin. J. Lasers*, 2007, **34**(2): 209~213 姚江宏,薛亮平,颜博霞 等. 周期极化掺镁铌酸锂晶体的光学参 量振荡[J]. 中国激光, 2007, **34**(2): 209~213
- 8 Li Tao, Zhuo Zhuang, Li Xiaomin *et al.*. Laser diode-sidepumped acousto-optic Q-switched Nd: YAG/KTA eye-safe optical parametric oscillator [J]. *Chin. J. Lasers*, 2006, **33** (10): 1305~1308

李 涛,卓 壮,李晓敏 等.激光二极管侧面抽运声光调 Q Nd:YAG/KTA 1.57 μm 人眼安全光参量振荡激光器[J].中国 激光,2006,**33**(10):1305~1308

- 9 Hellwig H., Liebertz J., Bohaty L.. Exceptional large nonlinear optical coefficients in the monoclinic bismuth triborate BiB₃O₆ [J]. Solid State Commun., 1999, 109: 249~251
- 10 Wang Zingping, Teng Bing, Fu Kun et al.. Efficient second harmonic generation of pulsed laser radiation in BiB3O6 (BIBO)

crystal with different phase matching directions [J]. Opt. Commun., 2002, **202**(1~3): 217~220

- 11 Becker P., Liebertz J., Bohaty L.. Top-seeded growth of bismuth triborate[J]. J. Crystal Growth, 1999, 203: 149~155
- 12 Ghotbi M., Ebrahim-Zadeh M., Majchrowski A. *et al.*. Highaverage-power femtosecond pulse generation in the blue using BiB₃O₆[J]. Opt. Lett., 2004, **29**(21): 2530~2532
- 13 Ghotbi M., Sun Z., Majchrowski A. et al.. Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB₃O₆[J]. Appl. Phys. Lett., 2006, 89: 173124-1~173124-3
- 14 Teng Bing, Wang Jiyang, Wang Zhengping *et al.*. Growth and investigation of a new nonlinear optical crystal: bismuth borate BiB₃O₆[J]. J. Crystal Growth, ????, 224(3~4): 280~283
- 15 Teng Bing, Wang Zingping, Jiang Huaidong. Anisotropic thermal expansion of BiB₃O₆[J]. J. Appl. Phys., 2002, 91(6): 3618~3620
- 16 Wang Zhengping, Du Chenlin, Teng Bing *et al.*. Third harmonic generation property of 1064 nm in nonlinear optical crystal BiB₃O₆ of low symmetry[J]. *Acta Optica Sinica*, 2003, **23**(11): 1300~1305 王正平,杜晨林,滕 冰等. 低对称性非线性光学晶体硼酸铋 (DIMO) th 1004

(BIBO)的1064 nm 三倍频性质[J]. 光学学报,2003,23(11): 1300~1305

- 17 Chen Feng, Hu Hui, Wang Keming *et al.*. Formation of planar optical waveguide by mega-electron-volt He⁺ and P⁺ ions implanted in a BiB₃O₆ crystal[J]. *Opt. Lett.*, 2001, **26**(24): 1993~1995
- 18 Ghotbi M, Esteban-Martin A, Ebrahim-Zadeh M. BiB₃O₆ femtosecond optical parametric oscillator[J]. Opt. Lett., 2006, 31(21): 3128~3130
- Arlee V Smith. Sandia National Laboratories, Albuquerque, N. M. http://www.sandia.gov/imrl/XWEB1128/xxtal.htm
- 20 Koechner Walter. Solid-State Laser Engineering [M]. Sun Weng, Jiang Zeweng, Cheng Guoxiang transl., Beijing: Science Press, 2002. 540~559 克希耐尔 W. 固体激光工程[M] 孙 文,江泽文,程国祥译. 北 京:科学出版社, 2002. 540~559